arguments that such activated complexes have reactant-like internal structures and solvent reorganization as their reaction coordinates have been based on $\mathrm{p} K_{\mathrm{a}}(\neq)$ and its temperature dependence. ${ }^{17}$ A strikingly analogous conclusion about the reaction coordinate in cation-anion recombinations has been published recently by Ritchie. ${ }^{18}$

As alluded to above, rigorous deduction of the value of δ from observed values of $k_{1}{ }^{\mathrm{H}} / k_{1}{ }^{\mathrm{D}}$ in MeCN and TMSO_{2} requires knowledge concerning the values of $\phi_{\mathrm{OL}^{+}}$and ϕ_{OL} in those solvents. If $\phi_{\mathrm{OL}^{+}}=\phi_{\mathrm{OL}}$, then $k_{1}{ }^{\mathrm{H}} / k_{1}{ }^{\mathrm{D}}=1.00$ (as observed) for all possible values of δ. Although we regard this alternative origin of $k_{1}{ }^{\mathrm{H}} / k_{1}{ }^{\mathrm{D}}$ as unlikely, experiments designed to measured $\phi_{\mathrm{OL}^{+}}$relative to ϕ_{OL} in aprotic media are in progress.

Acknowledgments. We gratefully acknowledge support of this work by the National Science Foundation (CHE 76-21052).
(16) (a) Treindl, L.; Robertson, R. E.; Sugamori, S. E. Can. J. Chem. 1969, 47, 3397. (b) Laughton, P. M.; Robertson, R. E. In "Solute-Solvent Interactions"; Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker; New York, 1969; Chapter 7.
(17) (a) Kurz, J. L.; Harris, J. C. J. Am. Chem. Soc. 1970, 92, 4117. (b) Kurz, J. L. Acc. Chem. Res. 1972, 5, 1. (c) Kurz, J. L.; Lee, Y.-N. J. Am. Chem. Soc. 1975, 97, 3841.
(18) Ritchie, C. D. Pure Appl. Chem. 1979, 51, 153

Joseph L. Kurz,* Jasun Lee
 Department of Chemistry, Washington University
 St. Louis, Missouri 63130

Received March 13, 1980

Oxetene: Synthesis and Energetics of Electrocyclic Ring Opening

Sir:
Although several substituted oxetenes have been synthesized, ${ }^{1}$ the parent compound (1a) has not yet been prepared. We now report the synthesis of this unique strained ring compound and an investigation of the kinetics of its electrocyclic ring opening to acrolein.

Hortman and Bhattacharjya ${ }^{2}$ reported that pyrolysis of tosylhydrazone lithium salt $\mathbf{2 b}$ leads to 3,4-dimethyl-3-penten-2-one (3b). Although tetramethyloxetene $\mathbf{1 b}$ was not isolated in this

reaction, the authors claim it is an intermediate. The rearrangement of $\mathbf{1 b}$ to $\mathbf{3 b}$ has been reported. ${ }^{3}$ Accordingly, we have prepared the tosylhydrazone lithium salt $\mathbf{2 a}^{4}$ from 3 -oxetanone. ${ }^{5}$

[^0]Compound 2 a was flash pyrolyzed at $180-190^{\circ} \mathrm{C}$ in vacuo, and volatile reaction products were collected at $-196^{\circ} \mathrm{C}$. NMR analysis indicated acrolein and a compound thought to be oxetene were present in a $0.2-0.5: 1$ ratio. Oxetene could be further purified by trap to trap distillation from -110 to $-196^{\circ} \mathrm{C}$. This procedure removed the majority of acrolein, leaving oxetene of $>90 \%$ purity in the $-110^{\circ} \mathrm{C}$ trap. The only observable impurity was acrolein. The yield of 1 a was 11% on the basis of starting tosylhydrazone.

Spectral data are consistent with an assignment of the oxetene structure: NMR $\left(\mathrm{CDCl}_{3},-25^{\circ} \mathrm{C}\right) \delta 5.27$ (br s, 2 H), 5.73 (br $\mathrm{s}, 1 \mathrm{H}), 6.70$ (br s, 1 H); IR (gas phase, $25^{\circ} \mathrm{C}$) $3020(\mathrm{w}), 3000$ (s), 2970 (m), 1565 (m), 1285 (m), 1025 (s), $920(\mathrm{~s}), 880(\mathrm{~s})$, $665(\mathrm{~s}), 425(\mathrm{~s}) \mathrm{cm}^{-1}$. The IR band at $1565 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{C}=\mathrm{C}$ stretch in analogy with the $\mathrm{C}=\mathrm{C}$ stretch in cyclobutene which appears at $1566 \mathrm{~cm}^{-1} .8,9$

The chemical reactivity of $\mathbf{1 a}$ also provides evidence for its structure. Hydrogenation of 1a to oxetane 4 was accomplished by reacting a gaseous mixture of 1 a and hydrogen over $5 \% \mathrm{Pd}$

on activated charcoal at $0^{\circ} \mathrm{C}$. The IR spectrum of the product was identical with that of 4 . When a CDCl_{3} solution of 1 a was allowed to stand at $25^{\circ} \mathrm{C}$, smooth rearrangement to acrolein (3a) occurred. Similarly, the gas-phase rearrangement of 1 a to 3 a at various temperatures was followed by IR spectroscopy. The kinetics of this gas-phase electrocyclic ring opening of 1a to 3a were measured at $35,44.5,57$, and $86.2^{\circ} \mathrm{C}$. From these data, an activation enthalpy of $24.1 \pm 1.5 \mathrm{kcal} / \mathrm{mol}$ and an activation entropy of 0.0 ± 3.1 eu were calculated. We have previously used the MINDO/3 ${ }^{10,11}$ molecular-orbital method to calculate a value of $30.7 \mathrm{kcal} / \mathrm{mol}$ for the activation enthalpy of this ring opening.

The presence of the electronegative oxygen atom in 1a raises the possibility of a polar transition state such as 5 for the elec-

$$
\begin{aligned}
& 5 \mathrm{a}, \mathrm{R}=\mathrm{H} \\
& 5 \mathrm{~b}, \mathrm{R}=\mathrm{Me}
\end{aligned}
$$

trocyclic ring opening. However, the fact that the ΔH^{\dagger} for the opening of $\mathbf{1 a}$ in the gas phase is similar to that reported for $\mathbf{1 b}$ in various solvents appears to preclude a polar transition state such as 5 . If this transition state was important, electron donation in 1b would accelerate the rearrangement compared to that of 1 a . Friedrich and Schuster ${ }^{3}$ have concluded there is little charge separation in the transition state for the ring opening of $\mathbf{1 b}$.

Pyrolysis of the tosylhydrazone salt 2a undoubtedly proceeds via 3-oxacyclobutylidene 6a. It is of interest that no evidence for ring contraction of 6 a to allene oxide 7 could be obtained. Al-

though allene oxide is unknown, calculations suggest its rearrangement to cyclopropanone 8 is facile. ${ }^{11}$ However, careful analysis of the pyrolysis products from 2a revealed no 8 was

[^1]present. In contrast, cyclobutanylidene reacts primarily by ring contraction to give methylenecyclopropane along with smaller amounts of cyclobutene. ${ }^{13}$ This diverse behavior of the two carbenes is probably ascribable to the fact that rearrangement of 6 a to 7 is less exothermic than is rearrangement of cyclobutanylidene to methylenecyclopropane. Hortman and Bhattacharjya did not find evidence for ring contraction of carbene $\mathbf{6 b} .^{2}$

Acknowledgments. We are grateful to the National Science Foundation for support of this work under Grant CHE77-24624.
(12) Liberles, A.; Greenberg, A.; Lesk, A. J. Am. Chem. Soc. 1972, 94, 8685.
(13) Friedman, L.; Schecter, H. J. Am. Chem. Soc. 1960, 82, 1002.

Philip C. Martino, Philip B. Shevlin*
 Department of Chemistry, Auburn University
 Auburn, Alabama 36830
 Received January 21, 1980

1,1-Dichloro-2,5-bis(N-chlorothioimino)-3,4-dicyanoselenophene

Sir:
Polymers with unsaturated sulfur (or selenium) and nitrogen and carbon backbones are of interest in regard to their potential electronic properties ${ }^{1}$ because they are versatile extrapolations on the known inorganic superconducting polymer (SN) x_{x}.

The $\mathrm{SC}=\mathrm{NSCl}$ moiety, while relatively unknown, ${ }^{\frac{1}{3}}$ could be used as an electrophile in condensation reactions as in eq 1 .

With this in mind, we designed the monomers 1^{4} and 3 ; it was expected that the latter could be prepared from the unknown

diamine 2 by a procedure developed for the preparation of $\mathbf{1}$, namely, eq 2.

$4 \mathrm{HCl}+\mathrm{S}$
Reductive selenation of TCNE (eq 3) was expected to produce the diamine $\mathbf{2}$ in analogy with the synthesis of 2,5-diamino-3,4dicyanothiophene. ${ }^{5}$

$$
\begin{equation*}
\mathrm{TCNE}+2 \mathrm{H}_{2} \mathrm{Se} \rightarrow 3+\mathrm{Se} \tag{3}
\end{equation*}
$$

Here we report the preparation, characterization, and solid-state structure of the title compound produced in an attempted synthesis of 3 via reaction 2 .

[^2]Table I

Bond Distances (\AA)			
$\mathrm{Se} 1-\mathrm{Cl} 1$	$3.110(1)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.266(4)$
$\mathrm{Se} 1-\mathrm{Cl} 2$	$2.369(1)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.138(4)$
$\mathrm{Se} 1-\mathrm{C} 1$	$1.970(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.445(4)$
$\mathrm{Cl} 1-\mathrm{S} 1$	$2.041(1)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.427(4)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.585(3)$	$\mathrm{C} 2-\mathrm{C} 2$	$1.362(6)$
Bond Angles (Deg)			
$\mathrm{Cl} 2-\mathrm{Se} 1-\mathrm{Cl} 2$	$173.46(5)$	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl}$	$137.4(3)$
$\mathrm{Cl} 2-\mathrm{Se} 1-\mathrm{C} 1$	$87.16(9)$	$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{N} 1$	$127.4(2)$
$\mathrm{Cl} 2-\mathrm{Se} 1-\mathrm{C} 1$	$88.07(9)$	$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{C} 2$	$109.3(2)$
$\mathrm{Cl} 2-\mathrm{Se} 1-\mathrm{C} 1$	$88.07(9)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.3(3)$
$\mathrm{Cl} 2-\mathrm{Se} 1-\mathrm{C} 1$	$87.16(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2$	$117.5(2)$
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{C} 1$	$86.4(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.3(3)$
$\mathrm{Cl} 1-\mathrm{S} 1-\mathrm{N} 1$	$108.3(1)$	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3$	$122.2(2)$
		$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$179.2(4)$

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least-significant digits.

Figure 1. Molecular structure of 1,1-dichloro-2,5-bis(chlorothio-imino)-3,4-dicyanoselenophene.

Reaction 3 did indeed produce the diaminoselenophene 2 in good yield as a salmon-colored solid ${ }^{6}$ which was insoluble in most organic solvents and exhibited chemical properties similar to those of its sulfur analogue. ${ }^{7}$ On the other hand, when 2 was exposed to sulfur dichloride under conditions identical with the preparation of 1 , compound 4 was produced instead of 3 . Since sulfur chlorides are known to disproportionate readily, ${ }^{8}$ it was not surprising (after the fact) to isolate 4 instead of 3 because selenium is more electropositive than sulfur and can expand its valence octet more readily than sulfur ${ }^{8}$ (cf. 1 which is devoid of chlorines in the 1 -position).
Thus, $\mathbf{4}$ was produced in good yield as black prisms, ${ }^{9}$ whose structure could not be determined solely on the basis of its spectral properties: IR (KBr) 2225 (vw), $1520(\mathrm{~m}), 1490(\mathrm{~s}), 1330(\mathrm{~s})$, 1227 (w), 849 (m), $812(\mathrm{~s}) \mathrm{cm}^{-1}$; mass spectrum (MS), $m / e 344$ $(\mathrm{P}+2), 342(\mathrm{P}), 307(\mathrm{P}-\mathrm{Cl}), 272\left(\mathrm{P}-\mathrm{Cl}_{2}\right)$, etc. Note that the elemental analysis was low on Cl for $\mathbf{4}$ and high for $\mathbf{3}$ and the MS was correct for 3 ; furthermore, the IR spectra of 4 and 1 were practically identical which led us to believe that the product from reaction 2 was indeed 3. ${ }^{10}$ It was clear that in order to elucidate

[^3]
[^0]: (1) (a) Kobyashi, Y; Hanzawa, Y; Miyashita, W; Kumadaki, I. J. Am. Chem. Soc. 1979, 101, 6445 . (b) Koo, Ja-Young; Schuster, G. B. Ibid. 1977, 99, 5403. (c) Fredrich, L. E.; Bower, J. D. Ibid. 1973, 95, 6869. (d) Friedrich, L. E.; Schuster, G. B. Ibid. 1969, 91, 7204. (e) Hollander, J.; Woolf, C. Belgian Patent 671439, 1966; Chem. Abstr. 1966, 65, 8875 a.
 (2) Hortman, A. G.; Bhattacharjya, A. J. Am. Chem. Soc. 1976, 98, 7081.
 (3) Fredrich, L. E.; Schuster, G. B. J. Am. Chem. Soc. 1971, 93, 4602.
 (4) Kaufman, G. M.; Smith, J. A.; Vander-Stouw, G. G.; Schecter, H. J. Am. Chem. Soc. 1965, 87, 935.
 (5) 3-Oxetanone was prepared by the method of Williams ${ }^{6}$ and by a modification of the method of Wojtowicz, Polak, and Zaslowsky.'
 (6) Williams, H. D. U.S. Patent 3317 329, 1967; Chem. Abstr. 1967, 67, 3923x.
 (7) Wojtowicz, J. A.; Polak, R. J. J. Org. Chem. 1973, 38, 2061. Wojtowicz J. A.; Polak, R. J.; Zaslowsky, J. A. Ibid. 1971, 36, 2232.

[^1]: (8) Lord, R. C.; Rea, D. G. J. Org. Chem. 1957, 79, 2401.
 (9) L. E. Friedrich and P. Y-S. Lam of the University of Rochester have informed us in a private communication that they have prepared 1a, whose spectral properties are identical with those reported here, by a selenoxide pyrolysis.
 (10) Dewar, M. J. S.; Metius, P. J.; Student, P. J.; Brown, A.; Bingham R. C.; Lo, D. H.; Ramsden, C. A.; Killmar, H.; Weiner, P.; Bischof, P. K. "MINDO/3; Modified Intermediate Neglect of Differential Overlap", Program 279, Quantum Chemistry Program Exchange, Indiana University, 1975. The program was modified to operate on our IBM 370/158 computer.
 (11) Figuera, J. M.; Shevlin, P. B.; Worley, S. D. J. Am. Chem. Soc. 1976, $98,3820$.

[^2]: (1) F. Wudl, A. A. Kruger, and G. A. Thomas, Ann. N.Y. Acad. Sci., 313, 79 (1978).
 (2) G. B. Street and W. D. Gill, NATO Conf. Ser. [Ser.] 6, 1, 30l-326 (1979), and references within.
 (3) F. A. Davis, Org. Prep. Proced. Int., 11, 33 (1979); Int. J. Sulfur Chem., 8, 71 (1973).
 (4) F. Wudl and E. T. Zellers, J. Am. Chem. Soc., 102, 4283 (1980).
 (5) W. J. Middleton, V. A. Engelhardt, and B. S. Fisher, J. Am. Chem. Soc., 80, 2822 (1958).

[^3]: (6) Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{Se}: \mathrm{C}, 34.12 ; \mathrm{H}, 1.90 ; \mathrm{N}, 26.54 ; \mathrm{Se}, 37.44$. Found: C, 34.07; H, 2.22; N, 25.87; Se, 37.64 .
 (7) F. Wudl, E. T. Zellers, and D. Nalewajek, J. Org. Chem., in press.
 (8) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", Wiley-Interscience, New York, 1972, p 421 ff .
 (9) Anal. Calcd for $\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Se}$: $\mathrm{C}, 21.05 ; \mathrm{Cl}, 20.76 ; \mathrm{N}, 16.37 ; \mathrm{S}, 18.70$; $\mathrm{Se}, 23.09$. Found: $\mathrm{C}, 19.22 ; \mathrm{Cl}, 28.11 ; \mathrm{N}, 15.11 ; \mathrm{S}, 15.26 ; \mathrm{Se}, 22.03$. Calcd for $\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Se}: \mathrm{C}, 17.43 ; \mathrm{Cl}, 34.38 ; \mathrm{N}, 13.56 ; \mathrm{S}, 15.49 ; \mathrm{Se}, 19.12$.

